


Integral equation-based quantum solvation model for quantitative prediction of hydration free energies

Daniel Tomazic, Stefan M. Kast

Physikalische Chemie III, TU Dortmund, D-44227 Dortmund, Germany

The “embedded cluster reference interaction site model” (EC-RISM) [1] combines statistical-mechanical 3D RISM integral equation (IE) theory and quantum-chemical calculations in a self-consistent manner. In the past, application of approximate closure relations allowed us to compute relative thermodynamic quantities such as pK_a shifts [1,2] and tautomer ratios [3] in aqueous and nonaqueous solution with high accuracy; the quality of the wave function in solution has been demonstrated by successful calculation of chemical shifts related to nuclear magnetic resonance (NMR) spectroscopy. [4]

However, absolute solvation free energies suffer from well-known systematic deficits with available closure approximations. One way to semiempirically compensate for these artifacts is to fit a corrective term related to the partial molar volume (PMV) of the solute [5,6] such that experimentally measured hydration free energies match IE predictions. Since such an approach has not been attempted for a self-consistent quantum solvation model, we here present a two-step correction workflow by fitting EC-RISM hydration free energies to data taken from the MNSOL database [7]. We demonstrate the promising performance in the context of the chosen levels of theory, conformational sampling, and different forms of the PMV correction.

- [1] T. Kloss, J. Heil, S. M. Kast, *J. Phys. Chem. B*, **2008**, *112*, 4337-4343.
- [2] J. Heil, D. Tomazic, S. Egbers, S. M. Kast, *J. Mol. Model.*, **2014**, *20*, 2161.
- [3] S. M. Kast, J. Heil, S. Güssregen, K. F. Schmidt, *J. Comput.-Aided Mol. Des.*, **2010**, *24*, 343-353.
- [4] R. Frach, S. M. Kast, *J. Phys. Chem. A*, **2014**, *118*, 11620-11628.
- [5] J. F. Truchon, B. M. Pettitt, P. Labute, *J. Chem. Theory Comput.*, **2014**, *10*, 934-941.
- [6] D. S. Palmer, A. I. Frolov, E. L. Ratkova, M. V. Fedorov, *J. Phys.: Condens. Matter*, **2010**, *22*, 492101.
- [7] C. P. Kelly, C. J. Cramer, D. G. Truhlar, *J. Chem. Theory Comput.*, **2005**, *1*, 1133-1152.