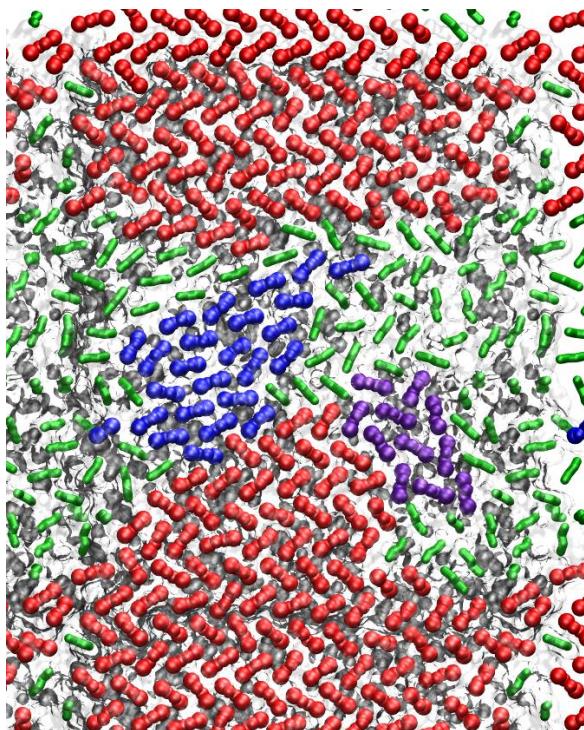


Simulating Nanostructures: 2D-periodic organic semiconductors

Andreas M. Krause^{a,b}, Thomas Schmaltz^{b,c}, Christof M. Jäger^{a,b,d}, Marcus Halik^{b,c} and Timothy Clark^{a,b}


^aComputer-Chemie-Centrum, Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany.

^bEngineering of Advanced Materials, Universität Erlangen-Nürnberg, Nägelsbachstr. 49b, 91052 Erlangen, Germany.

^cOrganic Materials and Devices, Institute of Polymer Materials, Department of Materials Science, Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany

^dDepartment of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, England

Organic semi-conductors surround us in daily life. Two years ago we have presented an n-type semiconductor system of C₆₀–C₁₈–PA.¹ Now we have simulated and analysed a p-type organic semi-conductor system of benzothieno[3,2–b][1]benzothiophene (BTBT) on an aluminum oxide surface. Special focus in this part of the work is the structure of organic molecules. Differences in structure between C₁₁ and C₁₂ BTBT have been worked out which agree with experimental results. In this talk we present results we have gained from molecular dynamic simulations we have performed on this 2D system.

(1) Jäger, C. M.; Schmaltz, T.; Novak, M.; Khassanov, A.; Vorobiev, A.; Hennemann, M.; Krause, A.; Dietrich, H.; Zahn, D.; Hirsch, A.; Halik, M.; Clark, T. *J. Am. Chem. Soc.* **2013**, 135, 4893.